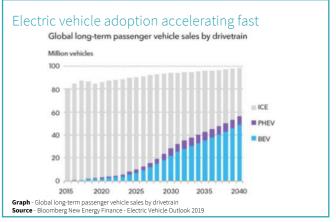
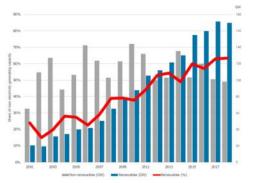


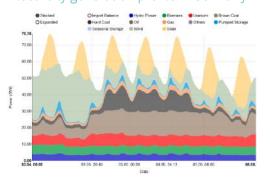
MARKET TRENDS


Four Major Trends are Shaking up the Energy Market



High Share of Renewables leads to increased Market Volatility

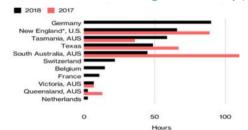
The energy transition is happening fast ...


Global newly installed renewable capacity

Fluctuating renewable energies account for twothirds of global new power generation capacity

Source - www.irena.org

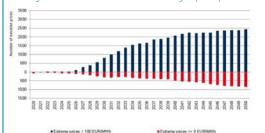
Electricity generation profile in Germany


Highly volatile power production in Germany due to solar and wind.

PV and wind cover 3 - 80% of national demand depending on time.

Source - Fraunhofer ISE (sample week May 2018)

... which leads to increased market volatility


Number of hours with negative intraday prices

Australia, Germany and the US with highest frequency of negative intraday prices.

Source - Epex Spot, National Electricity Market of Australia, ERCOT

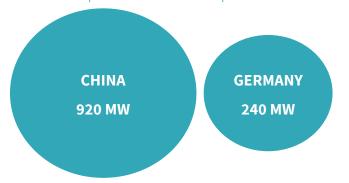
Projected extreme electricity spot prices in EU-28

Intervals with extreme electricity prices of above €100 and below zero per MWh will increase significantly.

Source - Energy Brainpool

To secure stability and resilience of the electricity market:

- Production and consumption needs to be managed more actively in the future (incl. forecasting, optimization, control)
- Energy storage needs to be deployed to smooth the renewable generation output



China installed 920 MW of household solar last month

Hopes are high up to 5 GW of residential solar capacity will have been added by the time this month's figures are added, as the household solar feed-in tariff still applies – but only until Thursday. However, the AECEA consultancy has again revised down its overall new capacity expectation for the year.

OCTOBER 29, 2019 MAX HALL

New rooftop PV installations per month:

The number of solar rooftop systems on homes is expected to more than double to some 100 million by 2024 globally (IEA).

Utility scale, rather than behind-the-meter batteries will drive energy storage take-up – Bloomberg u-turn

The analyst has published its latest *Energy Storage Outlook* report and says large scale deployment will provide the majority of the 1,095 GW/2,850 GWh of battery storage worldwide in 2040, with prices driven down further by grid services demand EVs.

- \$1.4 billion invested in battery technology firms in the first half of 2019 alone (RMI).
- Investments in energy storage will attract \$662 billion until 2040.
- 1,095 GW/2,850 GWh of energy storage will be installed by 2040 (BloombergNEF).
- **Lithium-battery costs to fall by a further 50% by 2040** due to increasing demand for electromobility and grid services.

European coal fleet will run at a loss of €6.57bn this year

Economic thinktank Carbon Tracker used financial modeling to determine the profitability of every coal power plant in the EU. On average, 79% of the facilities run at a loss, with Germany, Spain and Czechia among the states particularly exposed to the consequences – for coal investors and the public.

OCTOBER 31, 2019 MARIAN WILLUHN

- Analysts estimated **84% of lignite and 76% of hard coal generation capacity is operating at a loss**. (In 2017 "only" 46% of European coal fleet ran at a loss.)
- The two forms could **lose €3.54 billion and €3.03 billion**, respectively, in 2019.
- Germany (€1.97 billion) is the most exposed country, followed by Spain (€975 million), and Czech Republic (€899 million).
- Competition from ever cheaper renewables and gas is growing → coal will be phased out by 2030.

THE FSIGHT SOLUTION

The Product

ENERGY AI -

A network of autonomous agents that optimize energy flow behind & in front of the meter in distributed grids. Our AI platform learns and profiles consumer behavior on a country, regional and cluster level and continuously improves optimization algorithms and results.

PREDICT

Field proven technology with over 40 Machine Learning models able to learn and forecast consumption and production of numerous distributed grid assets.

OPTIMIZE

Employing advanced multi-goal consumption, production and price forecasting. The optimization engine manages the energy flow of each end user and makes real-time decisions regarding buying, selling and storing energy.

TRADE

Collaborative multi-agent trading system autonomously performing Peer-to-Grid and Peer-to-Peer trading to connect independent Prosumer optimization together in communities and entire grid.

- Increasing DER utilization
- Balancing local supply and demand
- Extracting maximum value from flexible resources

Benefits for the End-User

- Cost savings (up to 25%)
- New revenue streams
- Optimize self consumptior

Benefits for the Grid Operator

- Avod grid reinforcement
- Secure energy supply, reliability and resilience
- Balance of local supply/ demand

Benefits for the Energy Provider

- Visibility of end customer consumption & production
- Control of DERs
- New products, pricing & service opportunities

The Performance

Impressive results from our paid pilots in Israel & Europe

Maale Gilboa (Israel)

Up to 25% energy cost savings and increase of supply-self-sufficiency from 5% to 30% for the prosumers

Energy Community Germany

PV (no battery): 11% energy cost savings (optimization only), increase of supply-self-sufficiency from 19% to 33%

C&I Germany

Payback period from 8 to 3.5 years for the investment in PV, battery and diesel-engine

Fsight International Pilot - The Future Of Energy Communities

Maale Gilboa Community

A distributed and renewable energy community microgrid project demonstrating tomorrow's business cases together with a consortium of leading energy companies

Maale Gilboa community:

- 100 km northeast of Tel Aviv
- 750 inhabitants
- Locally governed microgrid

Live Gilboa Iris pilot:

- 200+ residential & commercial participants
- 1.5 MWp PV & wind capacity
- 1,600 MWh yearly production
- 3,200 MWh yearly consumption
- Flexibility options: batteries, EVs, smart home appliances, pump storage
- Example of installed

Use cases:

- Individual asset optimization
- Community grid optimization
- Peer-to-Peer / Grid trading
- Flexibility aggregation (VPP)
- Demand side management

Savings potential:

25% total electricity cost savings for community

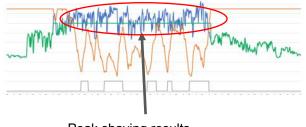
C&I Customers - DER Planning & Energy Cost Optimization

Ongoing Project - Sawmill, Germany

Situation:

- Industrial plant with high electricity usage (> 30,000 MWh p.a.)
- Grid cost heavily dependent on peak demand
- Unclear correlation btw. production volumes and electricity peaks
- No existing renewable or storage installations

FSIGHT Analysis:


- Analyzed 100s of DER scenarios (PV, battery, generator)
- Analyzed drivers & predictability of demand peaks
- Reviewed flexibility options in plant production levels
- Calculated energy arbitrage opportunities/primary reserve market potential
- Developing real time forecasting model

RESULTS:

- Set-up of **battery + generator**
- Up-front cost of less than € 2mn
- Reduction of peak consumption by appr. 1 MW
- Savings of 10-15% of yearly electricity cost (80% of grid costs saved)
- Payback time of less than 4 years

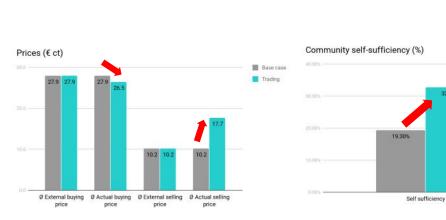
Optimized load profile

Energy Community Germany

German community:

- 2 commercial & 15 residential participants

Renewable installations:


- 270 kWp PV capacity

Use cases:

- P2P and community trading

Savings potential:


- 11% cost savings for community (no batteries)
- Increase of self sufficiency from 19% to 33%

Market Opportunity

