

DB Engineering & Consulting GmbH | Berlin/Tel Aviv | Dr.-Ing. Frank E. Menter

Introduction

Energy conversion into traction effort: on-board vs. infrastructure

Conversion in moving part

Conversion in fixed part

Steam

Diesel

Electric

Hydrogen

Pulley

MagLev

Hyperloop

Fundamental regional differences in voltage, frequency, polarity, contact system...

Mainline electrification standards in Europe

Mass transit: selected systems worldwide

	DC Voltage	AC Voltage
Overhead Catenary System	Buenos Aires Stuttgart Subway Stadtbahn (+1500V) (+750V) Pyongyang Tram Vienna Budapest Tel Aviv (+3000V) (+1000V) Red Line (+1500V)	New Jersey Transit (12.5kV 25Hz) British Columbia RR Jungfraubahn (50kV 60Hz) Mountain RR Karlsruhe (1125V 3~ TramTrain 50 Hz) (15kV 16.7Hz)
Rigid Conductor Rail	MBTA Boston Moscow Red Line Metro S-Bahn (+600V) (+750V) Hamburg London S-Bahn (+1200V) Underground Berlin (+420V / – 210V) (–750V)	SkyTrain Dusseldorf (400V 3~ 50Hz)

A bit of history, and a refresher "Electric Machinery 101" Series-connected DC motor was the original railway engine of choice

- Only series-connected DC motor has torque/speed profile compatible with traction power needs
- Characteristics of torque (M), flux (Φ), voltage (U), power (P) vs. speed (n/nN) characteristics controlled by series and shunt resistors (Example: tram Zwickau, 1910)

A bit of history, and a refresher "Electric Machinery 101"

Maintenance-friendly asynchronous AC (universal) motor allows higher voltages

Optimization problem:

- Higher voltage → lower losses
- Higher frequency → higher losses
- Lower frequency → higher transformer weight
- → Reduced frequency, e.g. ½ 50 Hz = 16¾ Hz, 25 Hz

Block diagram for rail vehicles with asynchronous motor **a**: AC supply; **b**: DC supply

Variable-frequency drive "mimics" torque-speed characteristic of DC motor

DC voltages below 1000 V cover most Light-Rail Transit (LRT) systems worldwide

DC systems below 1000 V

- First electric trains operated at $150 V_{DC} / 300 V_{DC}$
- IEC 60038:2009 defines "low voltage" as <1000V</p>
- 750 V_{DC} is most widely-used power system for trams / streetcars, trolley busses, metros

Munich tram and substation, 2000's at 750 V_{DC}

DC voltages above 1000 V serve for Mass Rapid Transit (MRT) and mainline

DC systems at 1500 V

- 1500 V_{DC} highest "low voltage" per IEC 60038:2009 in many jurisdictions
- Typical for most heavy subways / metros,
 e.g. Tel Aviv Red Line

Tel Aviv Redline, 2020's at 1500 V_{DC}

DC systems at 3000 V

 Usually for mainline only, including freight lines and mining trains

High-speed trains in Spain and Russia, 1990's at 3000 V_{DC}

DC traction: Stray currents can, if not properly controlled, cause corrosion problems

Electrolytic corrosion

- Cathodic corrosion is uncritical $(2 H_2O + O_2 + 4e^- \rightarrow 4 OH^-)$
- Anodic corrosion can be problematic: one Amp can dissolve almost 10 kg of steel per year (2 Fe \rightarrow 2 Fe2+ + 4e- ; C_{Fe} = 9.1 kg/A·yr)

Remedies

- Insulation of running rails from ground
- Continuous supervision of insulation resistance
- Distance between rail and other installations
- Active cathodic protection of external conductors

Single-phase AC voltages is the method of choice for (new) mainline electrification

AC systems at reduced frequency

- 15 kV 16.7 Hz is standard "ever since" in Germany (+AT/CH/NO/SE).
- Requires dedicates generation and transmission (±55 kV 16.7 Hz)

AC systems at standard frequency

- Standard for new installations, typically 25 kV 50(60) Hz
- "Rolling V-scheme" to minimize unbalance when connecting to HV public grid

Deutsche Bahn, 1900's ~today at 15 k V_{AC} ; Transmission grid at 110 k V_{AC} 16.7 Hz

Beginning of electrified era in Israel (14-Dec-2017) at 25 kV_{AC} 50 Hz

Two-phase AC systems allow for even larger spacing of substations

Autotransformer scheme

- Autotransformers typically used for long high-speed lines (FR/US/CN...)
- Requires separate conductors for catenary and negative feeders (±25 kV 50Hz)
- Requires AT stations every 5...10 km and sophisticated protective relaying schemes

TGV Overhead Catenary System (France); AMTRAK AT station (USA)

Three-phase AC systems play no role anymore - may change with wayside conversion

Early attempts to increase power

- German army's corps of engineers:
 3AC transmission to world's first train going >200 km/h (1903)
- 3AC 400 V (standard industrial supply) through current collector rails to early "people movers" (AEG, 1970's)

Wayside power conversion

 On systems with active components in the infrastructure (MagLev, HyperLoop), obviously three-phase MV power intake is required (and possible!) for electromagnets

Royal Prussian Military Railroad (1903)

SkyTrain Dusseldorf airport (1970~)

All TP facilities all remotely controlled and monitored

DB Energie network dispatch and control center

- Operations & Control Centers (OCC) either integrated or dedicated for power grid
- "Predictive Maintenance" through sensors and artificial intelligence

Outdoor or hybrid (containerized) substations mostly for mainline / AC systems

2x25 kV traction transformer (left) and outdoor switchgear (right) in Indian Railways

- Robust, field-proven technology from conventional HV switchyards
- Large space requirements, emission/immision needs to be considered
- Susceptible to ingress and vandalism

Outdoor or hybrid (containerized) substations mostly for mainline / AC systems

- Containers accommodate switchgear, controls & protection
- Transformer and overhead line intake & outgoing remain outdoors

Numerical transformer differential protection and operation relay Source: ABB

1x25(15) kV and 2x25 kV gas-insulated switchgear (width: 600 mm)

Source: Siemens

Traction Power Technology and Key ComponentsIndoor substations mostly for mass transit / DC systems

Transformers and power cables: low smoke / zero halogene (LSZH)

Rectifier, DC switchgear, DC circuit breaker Source: Sécheron

- Silicone rectifiers: six-, twelve-, twenty-four-pulse
- Metal-clad switchgear with DC circuit breaker trucks
- Circuit-breaker to withstand up to 8,000 A and interrupt up to 180 kA without current-zero!

Overhead Contact System (OCS)

OCS scheme as used for Israel Railways

- Interface between pantograph and contact system is magic, involving many disciplines
- Autotensioned system provides constant pulling force and OCS dynamics independent from temperature
- Contact wire in "zig-zag" to even out wear on pantograph's carbon strips

Traction Power Technology and Key ComponentsConductor Rail System

Conductor Rails ("Third" and "Fourth" Rail)

- Typically aluminum/steel compound rails (Vienna, left) for collector shoe picking up from below (Berlin)
- Steel conductor rails still in use (Tokyo) and used as "third/fourth" rails (London, right)

Alternatives without visible contact line or third rail are (still) a niche

Embedded conductor rails

- Idea originally documented in 1899
- Innorail (later Spie/Alstom) developed system with energized sections only safely underneath train

Thank you for your attention!

Dr.-Ing. Frank E. Menter
Senior Project Manager, Global Project Delivery
+49 160 905 78782
frank.f.menter@deutschebahn.com

db-engineering-consulting.com