

Electricity 2018 - Eilat

PV & Battery Storage

Pierre Kohn

Nov 8th, 2018

OVERVIEW

- Background: PV pros & cons
- Batteries: The challenge
- EDF Group experience
- Conclusion

2

BACKGROUND - PV ONLY

Development of the Domestic Rate

Development of Renewable Energy Rates

Zmorot – A Cloudy and a bright day

ADDITION OF STORAGE TO A PV PLANT

- Output stabilization
- Peak management:
 - Shift energy to evening / night
 - Overcome grid bottlenecks
- Ancillary services :
 - Frequency regulation,
 - Voltage control

THE CHALLENGE: THE BATTERIES

Lead acid (Pb, VRLA...)

Alkaline (NiCd, NiMH, NiZn ..)

Sodium (Zebra Na-NiCl2, NaS)

Lithium (Li ion, Li Métal Polymer...)

Redox-flow

Super capacitors

BATTERIES TEST PLATFORM @ EDF LAB

Large battery Tests Concept Grid

EVs packs test center (A10)

EDF ISLANDS ENERGY SYSTEMS

- St Pierre et Miquelon Guadeloupe + St-Martin et St-Barthélémy **Anglo - French** islands Martinique Corse Guyane La Réunion
- **√1,14** million customers
- **√3200 MW installed capacity**
- **√10 TWh production**
 - **✓27%** renewables

ZOOM IN: GUYANA

- 68 000 customers
- 133 MW
- 62% Renewables
- Toucan 1: 5 MWp PV + 2 MW / 4.5 MWh batteries (2014)
- Toucan 2: Extension of 5 MWp PV + 4 MW / 10 MWh batteries (2019)

TOUCAN - 1

Fixed production curve

TOUCAN1 - COMPONENTS

Simplified Diagram of Toucan Power Plant (AC Coupling)

TOUCAN - 2

✓ Typical daily production profile

CONCLUSION

PV & Storage is likely the technology of the future. It requires:

- Clear business model Working model before investment. What is the purpose?
 - Stabilization of PV
 - Peak shifting
 - Other Network services?
- Know-how needed:
 - Battery modelling and management
 - Battery procurement
 - Good weather forecast
- Key factors
 - Continuing Batteries cost reduction
 - Improvement in local forecast

BATTERIES: FREQUENCY REGULATION

- 49MW Battery Storage project deployed at West Burton CCGT allows EDF to benefit from favourable land, grid and network costs whilst also create a Centre of Energy Excellence.
- Lithium-ion battery cells will store energy, paired with an energy management system from EDF Store & Forecast.
- The project is electrically embedded within West Burton CCGT Power Station but as a separate generating unit.

Frequency Control - illustration

nationalgrid

