

Eilat, Israel November 6th Valeria Belluco - Product Manager Attilio Masoch - Business Developer

Cooling for Data center in a digitalized word

World is increasingly digitalised and Data Centres accounting for about 3% of global electricity demand.

- +40% of Data center Energy is related to cooling System
- Increasing Data Center temperature is a viable way to improve efficiency and reduce Energy consumption
- ASHRAE, in its guidance on Data Center temperatures, has increased its "recommended" and "allowable" temperatures.

Cooling Systems for Todays Cloud Architecture

Direct Expansion Economizer - OPEX reduction

CRACs Energy Saving units with VSD compressor reduce yearly energy consumption of 30%

- +43% cooling capacity in the box with the same power consumption figure compared to traditional working conditions
- +29% cooling capacity compared to traditional design at same conditions

..even with high return air temperature

Indirect Air Expansion Economizer — OPEX reduction

- Indirect air Economizer Ecoflair takes power that would be used for cooling and makes it available for Data Center operations.
- Evaporative cooling only even with hot air and low relative humidity
- Trim cooling to supplement the free cooling only at very high temperature and high relative humidity
- Designed to scale with the growing demands of today's Data Centers and to save valuable white space

Chilled water system

Traditional temperatures do not optimize summer and economization mode

It is advantageous to move from traditional 7°C or 10°C operation to higher values, up to 20°C

Specialized chiller and CRAH designed for high water temperatures for a Data Center gives benefits as follows:

To improve OPEX by increasing EER and/or extending the free-cooling operation and bordering the main ref. components life-cycle

To allow CAPEX reduction since the chillers can be downsized

New Frentier in Water Economization

Underfloor CRAH

CRAC optimized to operate with high temperatures (air & water)

Uniflair Cooling for the Future

Uniflair Cooling Solution reshapes the free-cooling on water based solutions

Trim Chiller

Innovative free-cooling trim chiller to maximize system efficiency, leveraging on freecooling as primary source

Uniflair LE HXCV – Undefloor CRAH optimized for High temperature

Uniflair HXCV HT

Uniflair HXCV HTE

Uniflair HXCV DC

140 kW 250 kW

Opex and Capex Optimization

Specific design for high water temperatures to leverage on Free Cooling operation with external free cooling trim chillers

Average 25% less power consumption delivering the same airflow of traditional units

Average 30% more capacity on the same perimeter

Uniflair DSAF – Innovative Freecooling Trim Chiller

Complete range of Dry coolers

...and Trim Chiller to leverage on free cooling

Advanced adiabatic system with dynamic pads the power consumption of the is decreased in

waste the water that is not evaporated

+10% of full free cooling operation running in Dry mode*

-40% power consumption running with fixed adiabatic system*

-47% power consumption with wings adiabatic system *

Paris, water 20-32°C,20%gly

Water temperatures 32/20°C, 20% gly, Ambient temperature: 35°C dry bulb, RH 40%, Adiabatic OFF,

Reduce the energy bill with Economization!

There are various strategies to improve the efficiency of the cooling system in order to save energy. **Economization is a viable one**.

Continuous cooling systems innovation maximize the efficiency and reduce the Energy spent to keep cool Data Centers

