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Frequency spectrum for wireless communications
BAND  IEEE FREQUENCY WAVELENGTH 

Extremely Low Frequency ELF  3 – 30Hz  
Super Low Frequency SLF  30 – 300Hz  
Ultra Low Frequency ULF  300 - 3,000 Hz 1,000 - 100 Km 
Very Low Frequency VLF  3 - 30 KHz 100 – 10 Km 
Low Frequency LF  30 - 300 KHz 10 - 1 Km 
Medium Frequency MF  300 - 3,000 KHz 1 - 0.1 Km 
High Frequency HF  3 - 30 MHz 100 - 10 m 
Very High Frequency VHF  30 - 300 MHz 10 – 1 m 
Ultra High Frequency UHF  300 - 3,000 MHz 1 - 0.1 m 
  L 1 - 2 GHz  
  S 2 - 4 GHz  
Super High Frequency SHF  3 - 30 GHz 10 - 1 cm 
  C 4 - 8 GHz  
  X 8 - 12 GHz  
  Ku 12 - 18 GHz  
  K 18 - 26.5 GHz  
  Ka 26.5 - 40 GHz  
Extremely High Frequency EHF  30 - 300 GHz 1 - 0.1 cm 
  V 40 - 75 GHz  
  W 75 - 110 GHz  
Sub-millimeter (TeraHertz) FIR  300 - 3,000 GHz 1 – 0.1 mm 
Mid infra-red MIR  3 – 30 THz 100 – 10 µm 
Near infra-red NIR  30 – 300 THz 10 – 1 µm 
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Outline

• Atmospheric Attenuation
• Fog Attenuation
• Rain Attenuation

Outdoor Challenges

• Quasi-optical Analysis of MMW Propagation
• Fresnel’s Equations
• The Effects of Different Building Materials
• The Rayleigh Criterion for Roughness

Indoor Challenges

Two Rays Model

• Model Types
• Ray Tracing Model

Propagation in Tunnels

Experiments and Results

Summary and Additional Study



Millimeter Wave Propagation

• Suffers from atmospheric attenuation
• Affected by scattering and absorption
• Reflected by walls

• Useful for densely packed communications networks
• Free spectrum
• Small antennas
• Has frequency reuse potential (due to directivity / 

atmospheric attenuation)
• Can be analyzed using Geometrical Optics (GO)



Outdoor
Challenges



Atmospheric Attenuation
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• Millimeter-wave radiation 
suffers from molecular 
absorption and refraction in 
the atmosphere

• Peaks at 22 GHz and 183 
GHz caused by resonance 
absorption of water (H2O)

• Peaks at 60 GHz and 119 
GHz caused by absorption 
resonances of oxygen (O2). 



Fog Attenuation
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• Fog occurs at 100% relative humidity

• The water steams becomes to water molecules with water 
droplet concentration, W [g/m3]  

• Relative small molecules causing Rayleigh scattering



Rain Attenuation
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• Relative large water molecules causing Mie scattering



Indoor 
Challenges

Millimeter Wave 
Reflection from
Dielectric 
Surfaces



Fresnel’s Equations –
reflection coefficient

TE- transverse electric: 
the electric field is parallel to the interface plain

TM- transverse magnetic: 
the magnetic field is parallel to the interface plain



Dielectric constants



Effects of Different Building Materials



Scaling

20cm

10cm



The Rayleigh Criterion for Roughness

Rayleigh 
Criterion: 

Below this  value the 
surface reflection
behavior can be 

described like a mirror



Example:



Example (2):



Two 
Rays 
Model



Friis equation for LOS free space communication:

In the two-ray model, the received power is a result of coherent 
field summation of the LOS ray and the reflected ray



LOS reflected



• Horn antenna
• 94GHz
• Gain of 24 dBi

Radiation Pattern - G(θ)



Experimental setup
• Formica coat - epsilon=4

• Frequency - 94GHz

• Pt - 17dBm

• Distance - 4.5m

• Tx/Rx height- 10cm



Experiments Results



Propagation 
in Tunnels



Ray Tracing Model(1)

• Sum of LOS field with all reflected fields
• The reflected ray intensity is calculated using Fresnel

equation 
• Path length of each reflected ray is calculated using 
geometrical optics and image method

• Number of reflections is determined by the beam-width of the 
antenna (antenna gain)



Reflections From Walls

Top surface

Bottom surface

Side view:



Polarization of Reflected Ray at 
Each Surface



Multi-ray Summation

Symmetric scenario – Tx and Rx are located at the 
center of the tunnel cross section



Image Method (GO)



Number of Reflected Rays



Experiments 
and Results 



Experimental setup

• Radiation Pattern - G(θ)
• Frequency: 94GHz
• Distance: 6 meters

Transmitter Sub-scale tunnel
Detector with 

l f



Antenna polarization-
vertical (left), horizontal (right)



Summary

• MMW communication contains new challenges:
 Atmospheric effects
 Weather conditions like fog and rain
 Reflections

• Multiple reflection at indoor environment
 Reflection affects the received signal 
 At some scenarios it can help to preserve the link

• We improve our models and adjust to more complex challenges



Thank you for listening!
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