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Frequency spectrum for wireless communications

BAND IEEE FREQUENCY WAVELENGTH

Extremely Low Frequency ELF 3 —30Hz
Super Low Frequency SLF 30 —300Hz
Ultra Low Frequency ULF 300 - 3,000 Hz 1,000 - 100 Km
Very Low Frequency VLF @ 3 -30 KHz 100 — 10 Km
Low Frequency LF S 30 - 300 KHz 10-1 Km
Medium Frequency MF IEEE 300 - 3,000 KHz 1-0.1 Km
High Frequency HF 3 -30 MHz 100 - 10 m
Very High Frequency VHF 30 - 300 MHz 10— 1 m
Ultra High Frequency UHF 300 - 3,000 MHz 1-0.1m

L 1 -2 GHz

S 2 -4 GHz
Super High Frequency SHF 3 -30 GHz 10-1 cm

C 4 - 8 GHz

X 8 -12 GHz

Ku 12 - 18 GHz

K 18 -26.5 GHz

Ka 26.5 - 40 GHz
Extremely High Frequency EHF 30 - 300 GHz 1-0.1cm

\Y% 40 - 75 GHz

W 75 -110 GHz
Sub-millimeter (TeraHertz) FIR 300 - 3,000 GHz 1 —0.1 mm
Mid infra-red MIR 3 —-30 THz 100 — 10 um

Near infra-red NIR 30 — 300 THz 10 — 1 um




The FCC is driving key spectrum initiatives to enable 5G

Across low-band, mid-band, and high-band including mmWave
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Outdoor Challenges

* Atmospheric Attenuation
* Fog Attenuation
* Rain Attenuation

Indoor Challenges

* Quasi-optical Analysis of MMW Propagation
* Fresnel’s Equations

* The Effects of Different Building Materials

* The Rayleigh Criterion for Roughness

Outline

. Two Rays Model _

Propagation in Tunnels

* Model Types
* Ray Tracing Model

. Experiments and Results _
. Summary and Additional Study _







Fog

: Scattering Out d 070} &
__i Obstructions Range C h a].]. e n ge S

: Low Clouds




Atmospheric Attenuation

 Millimeter-wave radiation
suffers from molecular
absorption and refraction in
the atmosphere 107
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 Peaks at 22 GHz and 183
GHz caused by resonance
absorption of water (H,0)
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Fog Attenuation

* Fog occurs at 100% relative humidity

* The water steams becomes to water molecules with water

- 3
droplet concentration, W [g/m?] W, =0 g/m’
. . . . -— —-— [] —_— 3
« Relative small molecules causing Rayleigh scattering W,=0.1fg/m’]
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Rain Attenuation

Relative large water molecules causing Mie scattering

Mie Scattering Mie Scattering,

larger particles
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Indoor

Challenges

Millimeter Wave
Reflection from
Dielectric
Surfaces




Fresnel’s Equations —
reflection coefficient

€ sin(f,) — /€ — cos?(6,)

€ -sin(g,) + /& — cos*(6,)

'ty =

TM- transverse magnetic:
the magnetic field is parallel to the interface plain

sin(g,) — +/€ — cos?(6,)
sin(d,) + /€ — cos?(6,)

l'rg =

TE- transverse electric:
the electric field is parallel to the interface plain




Dielectric constants

Material Dielectric Constant €,  Frequency
Fused Silica  3.85 30 GHz
Glass 3.9 25 GHz
HDPA 2.34 27-30 GHz
Nylon 3.2 50 GHz
Teflon 3.0 22 GHz
Concrete 3.2-5 10GHz
Formica 6 -

Asphalt 3.18 -




Effects of Different Building Materials
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20cm
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Scaling

Parameter Full Scale | Subscale
Length L L'=1L/S
Wavelength A N =\/S
Frequency / ff==5f
Permittivity ¢ € =€
Permeability 1 o= p
Conductivity o o' = So




The Rayleigh Criterion for Roughness

Below this value the

Rayleigh T .
Criterion: Ap < — surface reflection
2 behavior can be
described like a mirror
27 ﬂ
AQ? = kAL = 7AL [ Ah < .
AL =2L =2Ahcos 6, = 2Ahsin 6, 8sin 0,
U
Ap =% 2Ahsin @

Z g




Example:
f =30GHz
Qg =10 Ah < &
U




Example (2):
f =94GHz
0, =10
U
Ah < 0.23cm




Transmitter

Antenna
LOS Signal

N

Ground Reflection




Friis equation for LOS free space communication:

/1\2
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\47Z'R0 )

In the two-ray model, the received power is a result of coherent
field summation of the LOS ray and the reflected ray

Ix




P, B ( A )2 Gd(Qo)e_ijO . Gd(Qg)roe_ij"’
P, \dr Ry | R,
\ J \ J

| |
LOS reflected

P,: Transmitter power

P,: Received power

A: Wavelength

Ry: LOS path length between 7, and R,

R,: Reflected ray path length between 7'y and R,

k: Wavenumber, k = 27/ A

G,,G,: Gain of 7, and R, antennas

Gy(6,) = VG, (0) - G.(0): Geometric mean of 7, and R, antenna gains at 6, angle
[ o= Reflection coeflicient




Radiation Pattern - ((0)
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Experimental setup

- Formica coat - epsilon=4
- Frequency - 94GHz
- Pt - 17dBm

- Distance - 4.5m

. Tx/Rx height- 10cm | =

i2000 008f iepog w00,



Path Loss (Two Rays)[dB]

Experiments Results
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Propagation
in Tunnels




Ray Tracing Model

- Sum of LOS field with all reflected fields
- The reflected ray intensity i1s calculated using Fresnel
equation

- Path length of each reflected ray 1s calculated using
geometrical optics and 1image method

- Number of reflections is determined by the beam-width of the
antenna (antenna gain)
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Reflections From Walls

Side view:

Top surface

Bottom surface dRr__.




Top surface
TX,
Vertical

Polarization of Reflected Ray at
Each Surface




Multi-ray Summation

Symmetric scenario — Tx and Rx are located at the
center of the tunnel cross section
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Image Method (GO)

Top surface Sl Ss




Number of Reflected Rays

Hirikes = Ro tan(O.SQr) — hy — h,

Hs* rikes
n :floor( L;-Ik + 1)
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Experimental setup

 Radiation Pattern - G(0)
* Frequency: 94GHz
* Distance: 6 meters

Transmitter Sub-scale tunnel

Detector with



Path Loss [dB]
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Antenna polarization-
vertical (left), horizontal (right)
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Thank you for listening!
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