

Asset Health Indices for HV
Assets and Probability of
Failure

Electricity 2018, Eilat

Dr Richard Heywood

Doble PowerTest UK

Overview

- Introduction: Asset Health Indices
- Data:
 - Understanding Failure modes and Correct tools for the job.
 - Condition Assessment and Monitoring feeds AHI process

- AHI Coding: encapsulate knowledge for your application
- Probability of Failure (PoF): where did that come from?
- Discussion/Conclusions

Asset Health Indices

- AHI is an estimate of an unknown variable: the actual transformer health
 - More data, will maybe give a better estimate
 - Estimating what healthy enough to do what, exactly?
 - There is not one type of AHI
 - The AHI is a number at that time of analysis and only an estimate.
- Action, timescale, justification, auditable
- Choose a range or scale or labels which are convenient and not misleading
- Statistics are for guidance...not set in stone
- Machine learning can yield a gem in a whole lot of sand/silt/stuff...
 But someone has to be able to tell them apart

What problem are you trying to solve with AHI?

The actual asset health is an <u>unknown</u> value: the AHI is an *estimate*, a 'model'

"all models are 'wrong', some models are useful", G. Box, Statistician

An index should have associated action & timescale related to the problem to be solved

More data, should enable a better estimate, a better AHI?

Whatever index we derive... it should not be a surprise!

How do you know you have succeeded?

ISO 18095: Transformer Failure Modes

Understanding failures (real events)

Transformer condition monitoring/assessment feeds AHI score...

Install sensors that allow online periodic or permanent monitoring of critical assets.

Start with a survey to check and get an overview of the condition of the asset.

Do offline testing to verify and confirm the condition of critical asset found by survey or inspection.

Starting with the end point in mind

- The 3 C's of condition monitoring:
 - *Control* The measurement and the response
 - Context What are the operating constraints, ambient, load, OLTC...
 - Conclusions Actionable decisions. Justifiable, auditable, useful real actions
- Learn and iterate
- Data to support decisions
- Must have an action plan in place if an alarm goes off!
 - And/or decide we don't need to do anything

"Condition monitoring is more than just a box with lights on"

National Grid

AHI Coding - Index and Indices

- What scale should we use?
 - Linear, logarithmic, dynamic, weighted....
- If we use 1 10, say: 1 is new/good and 10 is 'about to fail':
 - what does 6 mean?
 - how does 6 compare to 7
 - is 6 twice as bad as 3? Twice as likely to fail?
 - How accurate or precise is the number?
 - What does 3.9 mean? And what if it changes to 4.2????

This needs to be thought about!

- Can we relate the health index to a 'likelihood of failure'? "A real event".
- Key to extracting value: action and timescale
- Key to keeping your job: justifiable audit trail

AHI Code definitions

If we use 1 – 10, say: 1 is new/good and 10 is 'about to fail':

what does 6 mean? How soon do we need to act?

Monotonic? Easy at the individual parameter level, harder with multiple

	Dissolved key gas concentration limits [μL/L (ppm) ^a]								
Status	Hydrogen (H ₂)	Methane (CH ₄)	Acetylene (C ₂ H ₂)	Ethylene (C	Ethane	Carbon monoxide	Carbon dioxide	TDCG ^b	
Condition 1	100	120	1		Code				Description
Condition 2 Condition 3	101–700 701–1800	121–400 401–1000	2-9 10-35	51		No know	n problem	ıs	
Condition 4 > 1800 > 1000 > 35 > 3			;	Slightly unusual dissolved gas signature					
Code	,			1	.0	Possible a	rcing/spa	rking or	partial discharge fault
A transformer is expected		ted	30	Severe arcing/sparking or partial discharge fault					
					.00	Very severe arcing/sparking or partial discharge fau			or nartial discharge fault
B tran		ransformer is expected				, , , , , , , , , , , , , , , , , , , ,			
С	transformer is expected transformer at high risk of failure				failure .				
D	transformer is on active list for replacement within 2 years								

Case Study – Logarithmic Scoring The Outcome

League table for transmission operator – sorted by worst overall condition score

How does AHI relate to Probability of Failure

What is the probability of failure of an asset?

100%

Economist: J. M. Keynes:

" In the long run we are all dead."

Singer/Songwriter: Paul Simon

"Everything put together, sooner or later, falls apart."

So... we need to have some interest in time: probability of failure, by when?

Timescales must be included?

How do we move from data to AHI to PoF?

Timescales and condition (AHI)

PoF increase with higher AHI score

Tabulating PoF

Justifying category labels and PoF... assigned a replacement category

Category	AHI Range	Description	First estimate of Notional PoF per year
Α	0 - 30	Considered under normal operation	0.05% PoF
В	31- 50	Expect to replace within 15 years	0.2% PoF
С	51- 70	Expect to replace within 10 years	0.4% PoF
D	71 – 90	Expect to replace within 5 years	0.8% PoF
E	91 - 100	On replacement list for within 2 years	1.5% PoF

Or you could just choose:

- Label each unit with a category
- Timescale for action
- With PoF? Based on 'historic data'?
- Not necessarily linear, or consistent
 - but might be good enough for your system as a starting point

Category	Timescale	PoF estimate
5	1 month	12%
4	1 year	4%
3	2 years	2%
2	5 years	1.5%
1	15 years	1%

Case Study - When available data changes...

- PoF was x%
- Known failure mode
- Action...was
- But failed!

Iterate the AHI scoring system

Summary

- AHI is an estimate of a generally unknown variable: actual transformer health
 - More data, should be a better estimate?
- The index should be useful:
 - Choose a range or scale or labels which are helpful, not misleading
- Correct tools should be used to determine that AHI
- An index should be calibrated and have associated <u>action</u> & <u>timescale</u>
 - Timescales should calibrate be consistent across failure modes and assessments
- PoF may be difficult to justify if working from raw data
 - Hence why AHI scoring can help provide more accurate numbers
- PoF based on historic values may be justifiable as a starting point.
 - But system always needs developing...its not a one off exercise.

THANK YOU

