

New Methods for Non-intrusive On-site Testing of Gas-insulated Switchgear

Thomas RENAUDIN – OMICRON Electronics France

New Methods for Non-intrusive On-site Testing of GIS

> Voltage withstand testing with portable resonance test system

> Current transformer demagnetization from primary side

> Timing test with both sides grounded

MICRON

Requirements according IEC62271-203

Voltage withstand test

- > The GIS shall be installed completely and gas filled at its rated filling density.
- > Every newly installed part of the GIS shall be subjected to a dielectric test on site.

Partial discharge test

> Dielectric test performed as type test shall be followed by a partial discharge measurement

Rated voltage GIS [kVrms]	On-Site withstand voltage (U _d)	PD measurement test voltage	
72,5	120	87	
100	165	120	
123	200	148	
145	235	174	

Conventional testing up to now

- > High purchase cost
- > Heavy and huge components
- > High effort for transport and handling
- > Expensive
- > Time consuming venting and refilling necessary
- > High output power

Parallel resonance circuit

© OMICRON

Parallel resonance circuit

Power VT

- > Integrated part of the GIS
- > Reinforced low voltage winding
- > Measurement capabilities as usual voltage transformer
- > "test transformer" on site
- Slightly increased cost compensated through low transportation cost for test equipment
- > Can be set on busbar to test a complete substation:

Page 7

© OMICRON

PD measurement

> UHF measurement using built-in antenna:

New Methods for Non-intrusive On-site Testing of GIS

> Voltage withstand testing with portable resonance test system

> Current transformer demagnetization from primary side

> Timing test with both sides grounded

OMICRON

Why to demagnetize CT after circuit breaker test?

- DC current used during contact resistance test (static or dynamic) magnetizes CT mounted on dead tank breakers or GIS breakers
- > Residual flux affects CT accuracy limiting factor
- > The CT secondary reading is strongly affected by transient saturation when the CT core is already magnetized:

CT demagnetization from primary side

In order to ensure proper protective relay operations,

- > CT can be demagnetized from secondary side (each core individually)...
- > ...or **from the primary side** (all cores at once), same setup as for contact resistance measurement, time saving method.
 - > It can be carried out with both sides grounded
- > Example of remanence result after primary demag. process on 1200:5 C400 CTs of a 72.5kV dead tank circuit breaker :

CT (phase C)	C1	C2	C 3	C4
Initial remanence	5%	55%	38%	9%
Remanence after contact res. test	76%	79%	81%	79%
Remanence after demag from primary side	2%	2%	3%	3%

New Methods for Non-intrusive On-site Testing of GIS

> Voltage withstand testing with portable resonance test system

> Current transformer demagnetization from primary side

> Timing test with both sides grounded

OMICRON

Why to test timing with both sides grounded?

Why to test timing with both sides grounded?

Why to test timing with both sides grounded?

Dynamic Resistance Measurement

Due to a good ground connection of GIS $R_{CB} pprox R_{ground}$

- > Breaker closed, measured resistance $R_{close} = R_{CB} / / R_{ground}$
- > Breaker open, measured resistance $R_{open} = R_{ground}$

> Dynamic resistance measurement does not show a significative resistance change during operation

Dynamic Resistance Measurement (possible safe but intrusive setup)

- + Same wiring for timing test and contact resistance test
- + Give additional data about contact erosion
- Ground links must be removed on earthing switches

OMICRON

DCM (dynamic capacitance measurement)

> Change in frequency resonance is used to detect close and open states

source: Programma

- + Simple to use when compatible
- Weak ferrites needed for GIS
- Not compatible with GIS made in 80's and GIS < 120kV
- Different setups for timing test and contact resistance

OMICRON

Current sensor measurement (CSM) for GIS

- > DC current is injected in the breaker and on the grounded envelop
- > di/dt is directly measured at earthing switch shunts
- > Independent to test current amplitude
- > GIS integrity is kept, no need to remove ground connections

OMICRON

Current sensor measurement (CSM) for GIS

1st condition: current through contact & ground

2nd condition: current through ground path only

Current sensor measurement (CSM) for GIS

- + Small dimension and flexibility due to Rogowski coil
- + Adapted for GIS of all generations and types
- + Additional data about contact system and erosion
- Different setups for timing test and contact resistance test

OMICRON

Conclusion

> During commissioning and maintenance high voltage tests, the **integrated power VT** avoids the opening of SF6 gas compartment, and the risk of particles contamination.

> **Demagnetization from primary side** does not affect the CT secondary wiring.

> The **CSM** method represents a quick, easy and safe way to perform timing test on a both sides grounded GIS.

OMICRON

Page 23

> Thank you for your attention

© OMICRON